MakeItFrom.com
Menu (ESC)

G-CoCr28 Cobalt vs. C83300 Brass

G-CoCr28 cobalt belongs to the cobalt alloys classification, while C83300 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is G-CoCr28 cobalt and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 6.7
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 83
42
Tensile Strength: Ultimate (UTS), MPa 560
220
Tensile Strength: Yield (Proof), MPa 260
69

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1200
180
Melting Completion (Liquidus), °C 1330
1060
Melting Onset (Solidus), °C 1270
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 8.5
160
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 100
30
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 6.2
2.7
Embodied Energy, MJ/kg 84
44
Embodied Water, L/kg 440
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
60
Resilience: Unit (Modulus of Resilience), kJ/m3 160
21
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
6.9
Strength to Weight: Bending, points 19
9.2
Thermal Diffusivity, mm2/s 2.2
48
Thermal Shock Resistance, points 14
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.25
0
Chromium (Cr), % 27 to 30
0
Cobalt (Co), % 48 to 52
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 9.7 to 24.5
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.5 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7