MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. AISI 201L Stainless Steel

Grade 13 titanium belongs to the titanium alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
22 to 46
Fatigue Strength, MPa 140
270 to 530
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 200
520 to 660
Tensile Strength: Ultimate (UTS), MPa 310
740 to 1040
Tensile Strength: Yield (Proof), MPa 190
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
880
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
15
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.6
Embodied Energy, MJ/kg 520
38
Embodied Water, L/kg 210
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 180
220 to 1570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 19
27 to 37
Strength to Weight: Bending, points 22
24 to 30
Thermal Diffusivity, mm2/s 8.9
4.0
Thermal Shock Resistance, points 24
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
67.9 to 75
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0.4 to 0.6
3.5 to 5.5
Nitrogen (N), % 0 to 0.030
0 to 0.25
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.5 to 99.56
0
Residuals, % 0 to 0.4
0