MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. EN 1.4477 Stainless Steel

Grade 13 titanium belongs to the titanium alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 27
22 to 23
Fatigue Strength, MPa 140
420 to 490
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 200
550 to 580
Tensile Strength: Ultimate (UTS), MPa 310
880 to 930
Tensile Strength: Yield (Proof), MPa 190
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
13
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
20
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
3.7
Embodied Energy, MJ/kg 520
52
Embodied Water, L/kg 210
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 180
940 to 1290
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 19
31 to 33
Strength to Weight: Bending, points 22
26 to 27
Thermal Diffusivity, mm2/s 8.9
3.5
Thermal Shock Resistance, points 24
23 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0
0 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
56.6 to 63.6
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0.4 to 0.6
5.8 to 7.5
Nitrogen (N), % 0 to 0.030
0.3 to 0.4
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.5 to 99.56
0
Residuals, % 0 to 0.4
0