MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. ASTM A372 Grade L Steel

Grade 14 titanium belongs to the titanium alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
14
Fatigue Strength, MPa 220
670
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 290
700
Tensile Strength: Ultimate (UTS), MPa 460
1160
Tensile Strength: Yield (Proof), MPa 310
1040

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
430
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
44
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 32
1.7
Embodied Energy, MJ/kg 520
22
Embodied Water, L/kg 210
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
150
Resilience: Unit (Modulus of Resilience), kJ/m3 450
2890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 28
41
Strength to Weight: Bending, points 29
31
Thermal Diffusivity, mm2/s 8.5
12
Thermal Shock Resistance, points 35
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
95.2 to 96.3
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0.4 to 0.6
1.7 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.015
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0