MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. Nickel 601

Grade 14 titanium belongs to the titanium alloys classification, while nickel 601 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is nickel 601.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
10 to 38
Fatigue Strength, MPa 220
220 to 380
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 290
440 to 530
Tensile Strength: Ultimate (UTS), MPa 460
660 to 890
Tensile Strength: Yield (Proof), MPa 310
290 to 800

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 8.7
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
49
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 32
8.0
Embodied Energy, MJ/kg 520
110
Embodied Water, L/kg 210
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
86 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 450
210 to 1630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 28
22 to 30
Strength to Weight: Bending, points 29
20 to 25
Thermal Diffusivity, mm2/s 8.5
2.8
Thermal Shock Resistance, points 35
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
1.0 to 1.7
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
7.7 to 20
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.4 to 0.6
58 to 63
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0