MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. ACI-ASTM CA15 Steel

Grade 15 titanium belongs to the titanium alloys classification, while ACI-ASTM CA15 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is ACI-ASTM CA15 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
21
Fatigue Strength, MPa 290
370
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
34
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 540
700
Tensile Strength: Yield (Proof), MPa 430
570

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
750
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1500
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.0
Embodied Energy, MJ/kg 520
28
Embodied Water, L/kg 210
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 870
820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 33
25
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 8.4
6.7
Thermal Shock Resistance, points 41
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
81.8 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.4 to 0.6
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98.2 to 99.56
0
Residuals, % 0 to 0.4
0