MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. EN 1.4419 Stainless Steel

Grade 15 titanium belongs to the titanium alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
11 to 17
Fatigue Strength, MPa 290
230 to 680
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 340
410 to 950
Tensile Strength: Ultimate (UTS), MPa 540
660 to 1590
Tensile Strength: Yield (Proof), MPa 430
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
790
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
8.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.2
Embodied Energy, MJ/kg 520
30
Embodied Water, L/kg 210
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 870
350 to 3920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 33
24 to 57
Strength to Weight: Bending, points 33
22 to 39
Thermal Diffusivity, mm2/s 8.4
8.1
Thermal Shock Resistance, points 41
23 to 55

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
82 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.2 to 99.56
0
Residuals, % 0 to 0.4
0