MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. 1200 Aluminum

Grade 16 titanium belongs to the titanium alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 23
1.1 to 28
Fatigue Strength, MPa 240
25 to 69
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 250
54 to 100
Tensile Strength: Ultimate (UTS), MPa 400
85 to 180
Tensile Strength: Yield (Proof), MPa 340
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
660
Melting Onset (Solidus), °C 1610
650
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
230
Thermal Expansion, µm/m-K 9.2
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
58
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
190

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.2
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 550
5.7 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 25
8.7 to 19
Strength to Weight: Bending, points 27
16 to 26
Thermal Diffusivity, mm2/s 8.9
92
Thermal Shock Resistance, points 29
3.8 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
99 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 98.8 to 99.96
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.15