MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. C92200 Bronze

Grade 16 titanium belongs to the titanium alloys classification, while C92200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 23
25
Fatigue Strength, MPa 240
76
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 38
41
Tensile Strength: Ultimate (UTS), MPa 400
280
Tensile Strength: Yield (Proof), MPa 340
140

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
990
Melting Onset (Solidus), °C 1610
830
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 22
70
Thermal Expansion, µm/m-K 9.2
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
14
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
14

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 36
3.2
Embodied Energy, MJ/kg 600
52
Embodied Water, L/kg 230
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
58
Resilience: Unit (Modulus of Resilience), kJ/m3 550
87
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 25
8.9
Strength to Weight: Bending, points 27
11
Thermal Diffusivity, mm2/s 8.9
21
Thermal Shock Resistance, points 29
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0 to 0.4
0 to 0.7