MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. C97300 Nickel Silver

Grade 16 titanium belongs to the titanium alloys classification, while C97300 nickel silver belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is C97300 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 23
9.0
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
40
Tensile Strength: Ultimate (UTS), MPa 400
230
Tensile Strength: Yield (Proof), MPa 340
110

Thermal Properties

Latent Heat of Fusion, J/g 420
180
Maximum Temperature: Mechanical, °C 320
150
Melting Completion (Liquidus), °C 1660
1040
Melting Onset (Solidus), °C 1610
1010
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 22
29
Thermal Expansion, µm/m-K 9.2
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
6.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 36
3.7
Embodied Energy, MJ/kg 600
59
Embodied Water, L/kg 230
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
18
Resilience: Unit (Modulus of Resilience), kJ/m3 550
59
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 25
7.6
Strength to Weight: Bending, points 27
9.8
Thermal Diffusivity, mm2/s 8.9
9.3
Thermal Shock Resistance, points 29
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
53 to 58
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 1.5
Lead (Pb), % 0
8.0 to 11
Nickel (Ni), % 0
11 to 14
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
1.5 to 3.0
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
17 to 25
Residuals, % 0 to 0.4
0 to 1.0