MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. EN 1.0411 Steel

Grade 17 titanium belongs to the titanium alloys classification, while EN 1.0411 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is EN 1.0411 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 27
12 to 26
Fatigue Strength, MPa 160
200 to 320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
60 to 74
Shear Modulus, GPa 38
73
Shear Strength, MPa 180
300 to 350
Tensile Strength: Ultimate (UTS), MPa 270
420 to 570
Tensile Strength: Yield (Proof), MPa 210
270 to 480

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 23
52
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
18
Embodied Water, L/kg 230
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
43 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 220
190 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 17
15 to 20
Strength to Weight: Bending, points 21
16 to 20
Thermal Diffusivity, mm2/s 9.3
14
Thermal Shock Resistance, points 21
13 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.18 to 0.22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
98.7 to 99.1
Manganese (Mn), % 0
0.7 to 0.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 99.015 to 99.96
0
Residuals, % 0 to 0.4
0