MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. 1080A Aluminum

Grade 18 titanium belongs to the titanium alloys classification, while 1080A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is 1080A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11 to 17
2.3 to 34
Fatigue Strength, MPa 330 to 480
18 to 50
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 420 to 590
49 to 81
Tensile Strength: Ultimate (UTS), MPa 690 to 980
74 to 140
Tensile Strength: Yield (Proof), MPa 540 to 810
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
640
Melting Onset (Solidus), °C 1590
640
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
230
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
200

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 41
8.3
Embodied Energy, MJ/kg 670
160
Embodied Water, L/kg 270
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
3.1 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
2.1 to 100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 61
7.6 to 15
Strength to Weight: Bending, points 39 to 49
14 to 22
Thermal Diffusivity, mm2/s 3.4
94
Thermal Shock Resistance, points 47 to 67
3.3 to 6.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
99.8 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.15
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0
0 to 0.020
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 92.5 to 95.5
0 to 0.020
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.060
Residuals, % 0 to 0.4
0

Comparable Variants