MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. AISI 201LN Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
25 to 51
Fatigue Strength, MPa 330 to 480
340 to 540
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
530 to 680
Tensile Strength: Ultimate (UTS), MPa 690 to 980
740 to 1060
Tensile Strength: Yield (Proof), MPa 540 to 810
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
880
Melting Completion (Liquidus), °C 1640
1410
Melting Onset (Solidus), °C 1590
1370
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
15
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.6
Embodied Energy, MJ/kg 670
38
Embodied Water, L/kg 270
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
310 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
27 to 38
Strength to Weight: Bending, points 39 to 49
24 to 30
Thermal Diffusivity, mm2/s 3.4
4.0
Thermal Shock Resistance, points 47 to 67
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
67.9 to 73.5
Manganese (Mn), % 0
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants