MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. AISI 310 Stainless Steel

Grade 18 titanium belongs to the titanium alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
34 to 45
Fatigue Strength, MPa 330 to 480
240 to 280
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
78
Shear Strength, MPa 420 to 590
420 to 470
Tensile Strength: Ultimate (UTS), MPa 690 to 980
600 to 710
Tensile Strength: Yield (Proof), MPa 540 to 810
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1040
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
15
Thermal Expansion, µm/m-K 9.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
4.3
Embodied Energy, MJ/kg 670
61
Embodied Water, L/kg 270
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
170 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
21 to 25
Strength to Weight: Bending, points 39 to 49
20 to 22
Thermal Diffusivity, mm2/s 3.4
3.9
Thermal Shock Resistance, points 47 to 67
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.25
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
48.2 to 57
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0