MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. ASTM Grade HI Steel

Grade 18 titanium belongs to the titanium alloys classification, while ASTM grade HI steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is ASTM grade HI steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
11
Fatigue Strength, MPa 330 to 480
150
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 690 to 980
550
Tensile Strength: Yield (Proof), MPa 540 to 810
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1400
Melting Onset (Solidus), °C 1590
1350
Specific Heat Capacity, J/kg-K 550
490
Thermal Conductivity, W/m-K 8.3
15
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.4

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
4.1
Embodied Energy, MJ/kg 670
59
Embodied Water, L/kg 270
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
52
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
20
Strength to Weight: Bending, points 39 to 49
19
Thermal Diffusivity, mm2/s 3.4
3.9
Thermal Shock Resistance, points 47 to 67
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.2 to 0.5
Chromium (Cr), % 0
26 to 30
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
46.9 to 59.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
14 to 18
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0