MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. Nickel 22

Grade 18 titanium belongs to the titanium alloys classification, while nickel 22 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11 to 17
49
Fatigue Strength, MPa 330 to 480
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
84
Shear Strength, MPa 420 to 590
560
Tensile Strength: Ultimate (UTS), MPa 690 to 980
790
Tensile Strength: Yield (Proof), MPa 540 to 810
360

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
990
Melting Completion (Liquidus), °C 1640
1390
Melting Onset (Solidus), °C 1590
1360
Specific Heat Capacity, J/kg-K 550
430
Thermal Conductivity, W/m-K 8.3
10
Thermal Expansion, µm/m-K 9.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 41
12
Embodied Energy, MJ/kg 670
170
Embodied Water, L/kg 270
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 43 to 61
25
Strength to Weight: Bending, points 39 to 49
21
Thermal Diffusivity, mm2/s 3.4
2.7
Thermal Shock Resistance, points 47 to 67
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
2.0 to 6.0
Manganese (Mn), % 0
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
50.8 to 63
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 92.5 to 95.5
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 2.0 to 3.0
0 to 0.35
Residuals, % 0 to 0.4
0