MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. SAE-AISI 1084 Steel

Grade 18 titanium belongs to the titanium alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
11
Fatigue Strength, MPa 330 to 480
320 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
28 to 45
Shear Modulus, GPa 40
72
Shear Strength, MPa 420 to 590
470 to 550
Tensile Strength: Ultimate (UTS), MPa 690 to 980
780 to 930
Tensile Strength: Yield (Proof), MPa 540 to 810
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
51
Thermal Expansion, µm/m-K 9.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
1.4
Embodied Energy, MJ/kg 670
19
Embodied Water, L/kg 270
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
700 to 960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
28 to 33
Strength to Weight: Bending, points 39 to 49
24 to 27
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 47 to 67
25 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.8 to 0.93
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.1 to 98.6
Manganese (Mn), % 0
0.6 to 0.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0