MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. Sintered 6061 Aluminum

Grade 18 titanium belongs to the titanium alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11 to 17
0.5 to 6.0
Fatigue Strength, MPa 330 to 480
32 to 62
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
25
Tensile Strength: Ultimate (UTS), MPa 690 to 980
83 to 210
Tensile Strength: Yield (Proof), MPa 540 to 810
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
640
Melting Onset (Solidus), °C 1590
610
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
200
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
52
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
170

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 41
8.3
Embodied Energy, MJ/kg 670
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
28 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 43 to 61
8.6 to 21
Strength to Weight: Bending, points 39 to 49
16 to 29
Thermal Diffusivity, mm2/s 3.4
81
Thermal Shock Resistance, points 47 to 67
3.8 to 9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
96 to 99.4
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Magnesium (Mg), % 0
0.4 to 1.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.2 to 0.8
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0 to 1.5

Comparable Variants