MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C71640 Copper-nickel

Grade 18 titanium belongs to the titanium alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 690 to 980
490 to 630
Tensile Strength: Yield (Proof), MPa 540 to 810
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 330
260
Melting Completion (Liquidus), °C 1640
1180
Melting Onset (Solidus), °C 1590
1120
Specific Heat Capacity, J/kg-K 550
410
Thermal Conductivity, W/m-K 8.3
29
Thermal Expansion, µm/m-K 9.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 41
5.0
Embodied Energy, MJ/kg 670
73
Embodied Water, L/kg 270
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
130 to 750
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 43 to 61
15 to 20
Strength to Weight: Bending, points 39 to 49
16 to 18
Thermal Diffusivity, mm2/s 3.4
8.2
Thermal Shock Resistance, points 47 to 67
16 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
61.7 to 67.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
1.5 to 2.5
Nickel (Ni), % 0
29 to 32
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0 to 0.5