MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C83300 Brass

Grade 18 titanium belongs to the titanium alloys classification, while C83300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
35
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 690 to 980
220
Tensile Strength: Yield (Proof), MPa 540 to 810
69

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 330
180
Melting Completion (Liquidus), °C 1640
1060
Melting Onset (Solidus), °C 1590
1030
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.3
160
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
33

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 41
2.7
Embodied Energy, MJ/kg 670
44
Embodied Water, L/kg 270
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
60
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
21
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 43 to 61
6.9
Strength to Weight: Bending, points 39 to 49
9.2
Thermal Diffusivity, mm2/s 3.4
48
Thermal Shock Resistance, points 47 to 67
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
92 to 94
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Lead (Pb), % 0
1.0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Tin (Sn), % 0
1.0 to 2.0
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0 to 0.4
0 to 0.7