MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C85400 Brass

Grade 18 titanium belongs to the titanium alloys classification, while C85400 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 11 to 17
23
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 690 to 980
220
Tensile Strength: Yield (Proof), MPa 540 to 810
85

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 330
130
Melting Completion (Liquidus), °C 1640
940
Melting Onset (Solidus), °C 1590
940
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.3
89
Thermal Expansion, µm/m-K 9.9
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
22

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 41
2.8
Embodied Energy, MJ/kg 670
46
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
35
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 61
7.5
Strength to Weight: Bending, points 39 to 49
9.9
Thermal Diffusivity, mm2/s 3.4
28
Thermal Shock Resistance, points 47 to 67
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0 to 0.35
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
65 to 70
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
24 to 32
Residuals, % 0 to 0.4
0 to 1.1