MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C87700 Bronze

Grade 18 titanium belongs to the titanium alloys classification, while C87700 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
3.6
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 690 to 980
300
Tensile Strength: Yield (Proof), MPa 540 to 810
120

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
180
Melting Completion (Liquidus), °C 1640
980
Melting Onset (Solidus), °C 1590
900
Specific Heat Capacity, J/kg-K 550
400
Thermal Conductivity, W/m-K 8.3
120
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
48

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 41
2.7
Embodied Energy, MJ/kg 670
45
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
64
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 61
9.8
Strength to Weight: Bending, points 39 to 49
12
Thermal Diffusivity, mm2/s 3.4
34
Thermal Shock Resistance, points 47 to 67
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
87.5 to 90.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.15
Silicon (Si), % 0
2.5 to 3.5
Tin (Sn), % 0
0 to 2.0
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0 to 0.4
0 to 0.8