MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. C87800 Brass

Grade 18 titanium belongs to the titanium alloys classification, while C87800 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 690 to 980
590
Tensile Strength: Yield (Proof), MPa 540 to 810
350

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
920
Melting Onset (Solidus), °C 1590
820
Specific Heat Capacity, J/kg-K 550
410
Thermal Conductivity, W/m-K 8.3
28
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 41
2.7
Embodied Energy, MJ/kg 670
44
Embodied Water, L/kg 270
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
540
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 61
20
Strength to Weight: Bending, points 39 to 49
19
Thermal Diffusivity, mm2/s 3.4
8.3
Thermal Shock Resistance, points 47 to 67
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
80 to 84.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0 to 0.4
0 to 0.5