MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. 7050 Aluminum

Grade 20 titanium belongs to the titanium alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 5.7 to 17
2.2 to 12
Fatigue Strength, MPa 550 to 630
130 to 210
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 47
26
Shear Strength, MPa 560 to 740
280 to 330
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
490 to 570
Tensile Strength: Yield (Proof), MPa 850 to 1190
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 370
190
Melting Completion (Liquidus), °C 1660
630
Melting Onset (Solidus), °C 1600
490
Specific Heat Capacity, J/kg-K 520
860
Thermal Expansion, µm/m-K 9.6
24

Otherwise Unclassified Properties

Density, g/cm3 5.0
3.1
Embodied Carbon, kg CO2/kg material 52
8.2
Embodied Energy, MJ/kg 860
150
Embodied Water, L/kg 350
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
1110 to 1760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
45
Strength to Weight: Axial, points 50 to 70
45 to 51
Strength to Weight: Bending, points 41 to 52
45 to 50
Thermal Shock Resistance, points 55 to 77
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
87.3 to 92.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0 to 0.040
Copper (Cu), % 0
2.0 to 2.6
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.12
Titanium (Ti), % 71 to 77
0 to 0.060
Vanadium (V), % 7.5 to 8.5
0
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 3.5 to 4.5
0.080 to 0.15
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants