MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. ASTM A182 Grade F11 Class 1

Grade 20 titanium belongs to the titanium alloys classification, while ASTM A182 grade F11 class 1 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is ASTM A182 grade F11 class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
23
Fatigue Strength, MPa 550 to 630
160
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
50
Shear Modulus, GPa 47
73
Shear Strength, MPa 560 to 740
300
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
470
Tensile Strength: Yield (Proof), MPa 850 to 1190
230

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 370
430
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
13

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 52
1.6
Embodied Energy, MJ/kg 860
21
Embodied Water, L/kg 350
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
89
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 50 to 70
17
Strength to Weight: Bending, points 41 to 52
17
Thermal Shock Resistance, points 55 to 77
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.050 to 0.15
Chromium (Cr), % 5.5 to 6.5
1.0 to 1.5
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
96 to 97.7
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 3.5 to 4.5
0.44 to 0.65
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0