MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. ASTM A229 Spring Steel

Grade 20 titanium belongs to the titanium alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
14
Fatigue Strength, MPa 550 to 630
710 to 790
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 47
72
Shear Strength, MPa 560 to 740
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
1690 to 1890
Tensile Strength: Yield (Proof), MPa 850 to 1190
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
12

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 52
1.4
Embodied Energy, MJ/kg 860
19
Embodied Water, L/kg 350
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
3260 to 4080
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 50 to 70
60 to 67
Strength to Weight: Bending, points 41 to 52
40 to 43
Thermal Shock Resistance, points 55 to 77
54 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.55 to 0.85
Chromium (Cr), % 5.5 to 6.5
0
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
97.5 to 99
Manganese (Mn), % 0
0.3 to 1.2
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants