MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. ASTM A387 Grade 5 Steel

Grade 20 titanium belongs to the titanium alloys classification, while ASTM A387 grade 5 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is ASTM A387 grade 5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
20 to 21
Fatigue Strength, MPa 550 to 630
160 to 240
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 47
74
Shear Strength, MPa 560 to 740
310 to 380
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
500 to 600
Tensile Strength: Yield (Proof), MPa 850 to 1190
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 370
510
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
13

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 52
1.7
Embodied Energy, MJ/kg 860
23
Embodied Water, L/kg 350
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
140 to 320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 50 to 70
18 to 21
Strength to Weight: Bending, points 41 to 52
18 to 20
Thermal Shock Resistance, points 55 to 77
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.15
Chromium (Cr), % 5.5 to 6.5
4.0 to 6.0
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
92.1 to 95.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 3.5 to 4.5
0.45 to 0.65
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants