MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN 1.4110 Stainless Steel

Grade 20 titanium belongs to the titanium alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
11 to 14
Fatigue Strength, MPa 550 to 630
250 to 730
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
76
Shear Strength, MPa 560 to 740
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
770 to 1720
Tensile Strength: Yield (Proof), MPa 850 to 1190
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 370
790
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1600
1400
Specific Heat Capacity, J/kg-K 520
480
Thermal Expansion, µm/m-K 9.6
11

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.7
Embodied Carbon, kg CO2/kg material 52
2.3
Embodied Energy, MJ/kg 860
33
Embodied Water, L/kg 350
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
480 to 4550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 50 to 70
28 to 62
Strength to Weight: Bending, points 41 to 52
24 to 41
Thermal Shock Resistance, points 55 to 77
27 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.48 to 0.6
Chromium (Cr), % 5.5 to 6.5
13 to 15
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0.5 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0 to 0.15
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants