MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN 1.4652 Stainless Steel

Grade 20 titanium belongs to the titanium alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 5.7 to 17
45
Fatigue Strength, MPa 550 to 630
450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
81
Shear Strength, MPa 560 to 740
610
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
880
Tensile Strength: Yield (Proof), MPa 850 to 1190
490

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 370
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 520
460
Thermal Expansion, µm/m-K 9.6
15

Otherwise Unclassified Properties

Density, g/cm3 5.0
8.0
Embodied Carbon, kg CO2/kg material 52
6.4
Embodied Energy, MJ/kg 860
87
Embodied Water, L/kg 350
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
340
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 50 to 70
30
Strength to Weight: Bending, points 41 to 52
25
Thermal Shock Resistance, points 55 to 77
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.020
Chromium (Cr), % 5.5 to 6.5
23 to 25
Copper (Cu), % 0
0.3 to 0.6
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
38.3 to 46.3
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 3.5 to 4.5
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0 to 0.030
0.45 to 0.55
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0