MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN 1.5535 Steel

Grade 20 titanium belongs to the titanium alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
11 to 22
Fatigue Strength, MPa 550 to 630
210 to 320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
62 to 72
Shear Modulus, GPa 47
73
Shear Strength, MPa 560 to 740
320 to 370
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
450 to 1490
Tensile Strength: Yield (Proof), MPa 850 to 1190
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
13

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 52
1.4
Embodied Energy, MJ/kg 860
19
Embodied Water, L/kg 350
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
240 to 680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 50 to 70
16 to 53
Strength to Weight: Bending, points 41 to 52
17 to 37
Thermal Shock Resistance, points 55 to 77
13 to 44

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.050
0.2 to 0.25
Chromium (Cr), % 5.5 to 6.5
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
97.6 to 98.9
Manganese (Mn), % 0
0.9 to 1.2
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants