MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN AC-48000 Aluminum

Grade 20 titanium belongs to the titanium alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 5.7 to 17
1.0
Fatigue Strength, MPa 550 to 630
85 to 86
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 47
28
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
220 to 310
Tensile Strength: Yield (Proof), MPa 850 to 1190
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 370
190
Melting Completion (Liquidus), °C 1660
600
Melting Onset (Solidus), °C 1600
560
Specific Heat Capacity, J/kg-K 520
890
Thermal Expansion, µm/m-K 9.6
21

Otherwise Unclassified Properties

Density, g/cm3 5.0
2.7
Embodied Carbon, kg CO2/kg material 52
7.9
Embodied Energy, MJ/kg 860
140
Embodied Water, L/kg 350
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 33
53
Strength to Weight: Axial, points 50 to 70
23 to 33
Strength to Weight: Bending, points 41 to 52
31 to 39
Thermal Shock Resistance, points 55 to 77
10 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
80.4 to 87.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0
Copper (Cu), % 0
0.8 to 1.5
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0.7 to 1.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
10.5 to 13.5
Titanium (Ti), % 71 to 77
0 to 0.25
Vanadium (V), % 7.5 to 8.5
0
Zinc (Zn), % 0
0 to 0.35
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants