MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. SAE-AISI 1146 Steel

Grade 20 titanium belongs to the titanium alloys classification, while SAE-AISI 1146 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is SAE-AISI 1146 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
13 to 17
Fatigue Strength, MPa 550 to 630
240 to 400
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
40 to 45
Shear Modulus, GPa 47
72
Shear Strength, MPa 560 to 740
410 to 440
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
670 to 730
Tensile Strength: Yield (Proof), MPa 850 to 1190
360 to 630

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
13

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 52
1.4
Embodied Energy, MJ/kg 860
18
Embodied Water, L/kg 350
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
93 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
340 to 1050
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 50 to 70
24 to 26
Strength to Weight: Bending, points 41 to 52
22 to 23
Thermal Shock Resistance, points 55 to 77
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0.42 to 0.49
Chromium (Cr), % 5.5 to 6.5
0
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
98.3 to 98.8
Manganese (Mn), % 0
0.7 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants