MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. C84100 Brass

Grade 20 titanium belongs to the titanium alloys classification, while C84100 brass belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 5.7 to 17
13
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 47
39
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
230
Tensile Strength: Yield (Proof), MPa 850 to 1190
81

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 370
160
Melting Completion (Liquidus), °C 1660
1000
Melting Onset (Solidus), °C 1600
810
Specific Heat Capacity, J/kg-K 520
380
Thermal Expansion, µm/m-K 9.6
19

Otherwise Unclassified Properties

Density, g/cm3 5.0
8.5
Embodied Carbon, kg CO2/kg material 52
2.9
Embodied Energy, MJ/kg 860
48
Embodied Water, L/kg 350
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
24
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
30
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 33
19
Strength to Weight: Axial, points 50 to 70
7.4
Strength to Weight: Bending, points 41 to 52
9.7
Thermal Shock Resistance, points 55 to 77
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 5.5 to 6.5
0
Copper (Cu), % 0
78 to 85
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Tin (Sn), % 0
1.5 to 4.5
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zinc (Zn), % 0
12 to 20
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0 to 0.5