MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. AISI 308L Stainless Steel

Grade 21 titanium belongs to the titanium alloys classification, while AISI 308L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is AISI 308L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 9.0 to 17
34
Fatigue Strength, MPa 550 to 660
180
Poisson's Ratio 0.32
0.28
Reduction in Area, % 22
46
Shear Modulus, GPa 51
78
Shear Strength, MPa 550 to 790
380
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
580
Tensile Strength: Yield (Proof), MPa 870 to 1170
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
1010
Melting Completion (Liquidus), °C 1740
1420
Melting Onset (Solidus), °C 1690
1380
Specific Heat Capacity, J/kg-K 500
480
Thermal Conductivity, W/m-K 7.5
15
Thermal Expansion, µm/m-K 7.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
16
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 32
3.2
Embodied Energy, MJ/kg 490
45
Embodied Water, L/kg 180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
160
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 46 to 69
21
Strength to Weight: Bending, points 38 to 50
20
Thermal Diffusivity, mm2/s 2.8
4.1
Thermal Shock Resistance, points 66 to 100
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 0
19.5 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
63.8 to 70.5
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 14 to 16
0
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.15 to 0.25
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 76 to 81.2
0
Residuals, % 0 to 0.4
0