MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. CC140C Copper

Grade 21 titanium belongs to the titanium alloys classification, while CC140C copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 9.0 to 17
11
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 51
44
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
340
Tensile Strength: Yield (Proof), MPa 870 to 1170
230

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1740
1100
Melting Onset (Solidus), °C 1690
1040
Specific Heat Capacity, J/kg-K 500
390
Thermal Conductivity, W/m-K 7.5
310
Thermal Expansion, µm/m-K 7.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 5.4
8.9
Embodied Carbon, kg CO2/kg material 32
2.6
Embodied Energy, MJ/kg 490
41
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
34
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 32
18
Strength to Weight: Axial, points 46 to 69
10
Strength to Weight: Bending, points 38 to 50
12
Thermal Diffusivity, mm2/s 2.8
89
Thermal Shock Resistance, points 66 to 100
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0
Molybdenum (Mo), % 14 to 16
0
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Silicon (Si), % 0.15 to 0.25
0
Titanium (Ti), % 76 to 81.2
0
Residuals, % 0 to 0.4
0