MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. S31730 Stainless Steel

Grade 21 titanium belongs to the titanium alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 9.0 to 17
40
Fatigue Strength, MPa 550 to 660
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 51
77
Shear Strength, MPa 550 to 790
370
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
540
Tensile Strength: Yield (Proof), MPa 870 to 1170
200

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
990
Melting Completion (Liquidus), °C 1740
1430
Melting Onset (Solidus), °C 1690
1390
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 7.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 5.4
8.0
Embodied Carbon, kg CO2/kg material 32
4.6
Embodied Energy, MJ/kg 490
63
Embodied Water, L/kg 180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
99
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 46 to 69
19
Strength to Weight: Bending, points 38 to 50
18
Thermal Shock Resistance, points 66 to 100
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
52.4 to 61
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 14 to 16
3.0 to 4.0
Nickel (Ni), % 0
15 to 16.5
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0 to 0.045
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.15 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 76 to 81.2
0
Residuals, % 0 to 0.4
0