MakeItFrom.com
Menu (ESC)

Grade 27 Titanium vs. 1100 Aluminum

Grade 27 titanium belongs to the titanium alloys classification, while 1100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 27 titanium and the bottom bar is 1100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 27
1.1 to 32
Fatigue Strength, MPa 170
32 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 180
54 to 95
Tensile Strength: Ultimate (UTS), MPa 270
86 to 170
Tensile Strength: Yield (Proof), MPa 230
28 to 150

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
660
Melting Onset (Solidus), °C 1610
640
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
220
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
59
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
190

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 33
8.2
Embodied Energy, MJ/kg 530
150
Embodied Water, L/kg 320
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
0.76 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 240
5.7 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 17
8.7 to 17
Strength to Weight: Bending, points 21
16 to 25
Thermal Diffusivity, mm2/s 8.8
90
Thermal Shock Resistance, points 21
3.7 to 7.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
99 to 99.95
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0.050 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 99 to 99.92
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.15