MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. ASTM A372 Grade M Steel

Grade 28 titanium belongs to the titanium alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
18 to 21
Fatigue Strength, MPa 330 to 480
450 to 520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 420 to 590
510 to 570
Tensile Strength: Ultimate (UTS), MPa 690 to 980
810 to 910
Tensile Strength: Yield (Proof), MPa 540 to 810
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
450
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
46
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
5.0
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 37
2.0
Embodied Energy, MJ/kg 600
27
Embodied Water, L/kg 370
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
1140 to 1580
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
29 to 32
Strength to Weight: Bending, points 39 to 49
24 to 27
Thermal Diffusivity, mm2/s 3.4
12
Thermal Shock Resistance, points 47 to 66
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
92.5 to 95.1
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.015
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0 to 0.080
Residuals, % 0 to 0.4
0

Comparable Variants