MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. ASTM A387 Grade 11 Steel

Grade 28 titanium belongs to the titanium alloys classification, while ASTM A387 grade 11 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is ASTM A387 grade 11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
25
Fatigue Strength, MPa 330 to 480
200 to 250
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 420 to 590
320 to 390
Tensile Strength: Ultimate (UTS), MPa 690 to 980
500 to 600
Tensile Strength: Yield (Proof), MPa 540 to 810
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 330
430
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
39
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.9
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 37
1.6
Embodied Energy, MJ/kg 600
21
Embodied Water, L/kg 370
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
100 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
200 to 320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
18 to 21
Strength to Weight: Bending, points 39 to 49
18 to 20
Thermal Diffusivity, mm2/s 3.4
11
Thermal Shock Resistance, points 47 to 66
15 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.050 to 0.17
Chromium (Cr), % 0
1.0 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
96.2 to 97.6
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.65
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.025
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants