MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. Grade CW12MW Nickel

Grade 28 titanium belongs to the titanium alloys classification, while grade CW12MW nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is grade CW12MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11 to 17
4.6
Fatigue Strength, MPa 330 to 480
130
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
85
Tensile Strength: Ultimate (UTS), MPa 690 to 980
560
Tensile Strength: Yield (Proof), MPa 540 to 810
310

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
960
Melting Completion (Liquidus), °C 1640
1610
Melting Onset (Solidus), °C 1590
1560
Specific Heat Capacity, J/kg-K 550
410
Thermal Expansion, µm/m-K 9.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
70
Density, g/cm3 4.5
9.1
Embodied Carbon, kg CO2/kg material 37
13
Embodied Energy, MJ/kg 600
180
Embodied Water, L/kg 370
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
22
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 43 to 61
17
Strength to Weight: Bending, points 39 to 49
17
Thermal Shock Resistance, points 47 to 66
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
4.5 to 7.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
16 to 18
Nickel (Ni), % 0
49.2 to 60.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.4 to 95.4
0
Tungsten (W), % 0
3.8 to 5.3
Vanadium (V), % 2.0 to 3.0
0.2 to 0.4
Residuals, % 0 to 0.4
0