MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. N06210 Nickel

Grade 28 titanium belongs to the titanium alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11 to 17
51
Fatigue Strength, MPa 330 to 480
320
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
85
Shear Strength, MPa 420 to 590
560
Tensile Strength: Ultimate (UTS), MPa 690 to 980
780
Tensile Strength: Yield (Proof), MPa 540 to 810
350

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 330
980
Melting Completion (Liquidus), °C 1640
1570
Melting Onset (Solidus), °C 1590
1510
Specific Heat Capacity, J/kg-K 550
420
Thermal Expansion, µm/m-K 9.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
85
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 37
17
Embodied Energy, MJ/kg 600
250
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 43 to 61
24
Strength to Weight: Bending, points 39 to 49
21
Thermal Shock Resistance, points 47 to 66
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0 to 0.35
Residuals, % 0 to 0.4
0