MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. N08020 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
15 to 34
Fatigue Strength, MPa 330 to 480
210 to 240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
380 to 410
Tensile Strength: Ultimate (UTS), MPa 690 to 980
610 to 620
Tensile Strength: Yield (Proof), MPa 540 to 810
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1410
Melting Onset (Solidus), °C 1590
1360
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 8.3
12
Thermal Expansion, µm/m-K 9.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
38
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 37
6.6
Embodied Energy, MJ/kg 600
92
Embodied Water, L/kg 370
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
21
Strength to Weight: Bending, points 39 to 49
20
Thermal Diffusivity, mm2/s 3.4
3.2
Thermal Shock Resistance, points 47 to 66
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
29.9 to 44
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants