MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. S17700 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
1.0 to 23
Fatigue Strength, MPa 330 to 480
290 to 560
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 420 to 590
740 to 940
Tensile Strength: Ultimate (UTS), MPa 690 to 980
1180 to 1650
Tensile Strength: Yield (Proof), MPa 540 to 810
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
890
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
15
Thermal Expansion, µm/m-K 9.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 37
2.8
Embodied Energy, MJ/kg 600
40
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
460 to 3750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
42 to 59
Strength to Weight: Bending, points 39 to 49
32 to 40
Thermal Diffusivity, mm2/s 3.4
4.1
Thermal Shock Resistance, points 47 to 66
39 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0.75 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
70.5 to 76.8
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants