MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. S35045 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
39
Fatigue Strength, MPa 330 to 480
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 420 to 590
370
Tensile Strength: Ultimate (UTS), MPa 690 to 980
540
Tensile Strength: Yield (Proof), MPa 540 to 810
190

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1390
Melting Onset (Solidus), °C 1590
1340
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
12
Thermal Expansion, µm/m-K 9.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
34
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 37
5.8
Embodied Energy, MJ/kg 600
83
Embodied Water, L/kg 370
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
19
Strength to Weight: Bending, points 39 to 49
19
Thermal Diffusivity, mm2/s 3.4
3.2
Thermal Shock Resistance, points 47 to 66
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0.15 to 0.6
Carbon (C), % 0 to 0.080
0.060 to 0.1
Chromium (Cr), % 0
25 to 29
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
29.4 to 42.6
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
32 to 37
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.4 to 95.4
0.15 to 0.6
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0