MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. 2024 Aluminum

Grade 29 titanium belongs to the titanium alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 6.8 to 11
4.0 to 16
Fatigue Strength, MPa 460 to 510
90 to 180
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 550 to 560
130 to 320
Tensile Strength: Ultimate (UTS), MPa 930 to 940
200 to 540
Tensile Strength: Yield (Proof), MPa 850 to 870
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 340
200
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
500
Specific Heat Capacity, J/kg-K 560
880
Thermal Conductivity, W/m-K 7.3
120
Thermal Expansion, µm/m-K 9.3
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
90

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 4.5
3.0
Embodied Carbon, kg CO2/kg material 39
8.3
Embodied Energy, MJ/kg 640
150
Embodied Water, L/kg 410
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
70 to 1680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 58 to 59
18 to 50
Strength to Weight: Bending, points 47 to 48
25 to 49
Thermal Diffusivity, mm2/s 2.9
46
Thermal Shock Resistance, points 68 to 69
8.6 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
90.7 to 94.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.8 to 4.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0.3 to 0.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 88 to 90.9
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants