MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. AISI 302 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
4.5 to 46
Fatigue Strength, MPa 460 to 510
210 to 520
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 550 to 560
400 to 830
Tensile Strength: Ultimate (UTS), MPa 930 to 940
580 to 1430
Tensile Strength: Yield (Proof), MPa 850 to 870
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
710
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
16
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
3.0
Embodied Energy, MJ/kg 640
42
Embodied Water, L/kg 410
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
140 to 3070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
21 to 51
Strength to Weight: Bending, points 47 to 48
20 to 36
Thermal Diffusivity, mm2/s 2.9
4.4
Thermal Shock Resistance, points 68 to 69
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
67.9 to 75
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants