MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. AWS E80C-B6

Grade 29 titanium belongs to the titanium alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
19
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 930 to 940
630
Tensile Strength: Yield (Proof), MPa 850 to 870
530

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
39
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.7
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
1.8
Embodied Energy, MJ/kg 640
25
Embodied Water, L/kg 410
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
730
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
22
Strength to Weight: Bending, points 47 to 48
21
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 68 to 69
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
90.1 to 94.4
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0 to 0.030
Residuals, % 0 to 0.4
0 to 0.5