MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. EN 1.4568 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
2.3 to 21
Fatigue Strength, MPa 460 to 510
220 to 670
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 550 to 560
520 to 930
Tensile Strength: Ultimate (UTS), MPa 930 to 940
830 to 1620
Tensile Strength: Yield (Proof), MPa 850 to 870
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
890
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
16
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 39
2.8
Embodied Energy, MJ/kg 640
40
Embodied Water, L/kg 410
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
290 to 5710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
30 to 58
Strength to Weight: Bending, points 47 to 48
25 to 40
Thermal Diffusivity, mm2/s 2.9
4.3
Thermal Shock Resistance, points 68 to 69
23 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0.7 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
70.9 to 76.8
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0