MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. EN 1.5503 Steel

Grade 29 titanium belongs to the titanium alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
12 to 17
Fatigue Strength, MPa 460 to 510
180 to 280
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
63 to 72
Shear Modulus, GPa 40
73
Shear Strength, MPa 550 to 560
270 to 320
Tensile Strength: Ultimate (UTS), MPa 930 to 940
400 to 520
Tensile Strength: Yield (Proof), MPa 850 to 870
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
52
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
1.4
Embodied Energy, MJ/kg 640
18
Embodied Water, L/kg 410
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
200 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
14 to 19
Strength to Weight: Bending, points 47 to 48
15 to 18
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 68 to 69
12 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.080
0.16 to 0.2
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.4 to 99.239
Manganese (Mn), % 0
0.6 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0