MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. CC496K Bronze

Grade 29 titanium belongs to the titanium alloys classification, while CC496K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
97
Elongation at Break, % 6.8 to 11
8.6
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 40
36
Tensile Strength: Ultimate (UTS), MPa 930 to 940
210
Tensile Strength: Yield (Proof), MPa 850 to 870
99

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
140
Melting Completion (Liquidus), °C 1610
900
Melting Onset (Solidus), °C 1560
820
Specific Heat Capacity, J/kg-K 560
340
Thermal Conductivity, W/m-K 7.3
52
Thermal Expansion, µm/m-K 9.3
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 4.5
9.2
Embodied Carbon, kg CO2/kg material 39
3.3
Embodied Energy, MJ/kg 640
52
Embodied Water, L/kg 410
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
15
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
50
Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 35
17
Strength to Weight: Axial, points 58 to 59
6.5
Strength to Weight: Bending, points 47 to 48
8.6
Thermal Diffusivity, mm2/s 2.9
17
Thermal Shock Resistance, points 68 to 69
8.1

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
72 to 79.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.1
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.4
0